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SUMMARY

The limiting efficiency is considered with which orbital angular momentum
can be converted into rotational angular momentum, Jrot, of the mass-gaining
component in binary systems which undergo mass exchange. This limit,
(dJ]dM)max, then specifies the maximum extent to which the observed rates
of period change, dP/dt, can be affected by such reduction of orbital angular
momentum. In most cases this process cannot seriously affect dP/dt, and
therefore can be safely neglected in computing mass transfer rates and in
comparing observed dP/dt values with evolutionary model calculations.
Upon integrating (dJ/dM)max over the entire accretion process, we find that
the maximum accumulated rotational angular momentum is larger than the
amount implied by the observed underluminosities of stars in certain extreme
binary systems, by factors of 3 to 4. Shell stars and emission-line stars in
binary systems may be produced when core angular momentum is later
transferred into an envelope which already has nearly the limiting Jrot.

I. INTRODUCTION

Observed rates of orbital period change (dP/dt) are sometimes used to calculate
mass transfer rates in close binary systems. They are also used in the matching of
theoretical evolutionary model calculations, which predict dP/dt as a function of
time, to observed systems. Usually, conservation of the total mass of the system
and of total orbital angular momentum are assumed in such computations. For
both purposes one could object that an observed value of dP/dt might be affected
to a serious extent by conversion of orbital angular momentum into rotational
angular momentum of the mass-gaining component. In this paper we discuss
quantitatively the maximum orbital period change and the maximum angular
momentum conversion that can be expected.

2. PERIOD CHANGES

The relation between the orbital period, P, and the orbital angular momentum,
J, which follows from Kepler’s third law,

an(Mi+Ms)  J3

P= Gt (MiMa)® ()

leads, upon being differentiated, to

d_P _ 6m(M1+ M) J? [Q_J(Ml—Mz) sz} 2)
dt GYMMy3 |dt  MM: dt ]

M; and M refer to the mass-losing and mass-gaining components, respectively.
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Thus the two terms in parentheses show the relative importance of the non-
conservation of J and the mass transfer in establishing dP/dt. Of course, orbital
angular momentum which goes into rotational angular momentum behaves, in so
far as period changes are concerned, just as if it had been lost to the system, so we
shall refer to this effect as non-conservation of J(NCJ). We wish to consider under
what circumstances NCJ can be neglected. We therefore consider the ratio of these
terms,

dPycy _ = MiMy dJ (3)

dPyr . J(Mi—My) dMy 3

where MT denotes mass transfer. We can place a limit on dJ/dMs, as follows. An
element, m, of accreting mass will transfer the most angular momentum when it
strikes the accreting star tangentially with the ¢ velocity from infinity °, which is
4/2 times larger than the Keplerian circular velocity for a given radius. One can
then readily show that the angular momentum of 7 will be given by

Jm = km(2GMRy)\2 (4)

where k is a factor which depends on the latitude at which the gas stream, assumed
to be moving parallel to the orbital plane, hits the surface, and which therefore lies
between zero and unity. For most realistic cases, (k) will be between 1/2 and unity.
Clearly,

dJ[dMsy = —k(2GMaRs)1\2. (5)
Putting (5) into (3) and substituting for J from (1) yields

dPxcy (32772)1/6k [(I+q)1/3q1/2 Rol/2 J
dPur \ G (1—q) M,V/6pi3

(6)

where ¢ = Mz/M;j. Let n be the exponent in the mass-radius relation for the
accreting star, so that

Ry = Ro(Ma/M)™. 7)
Putting (7) into (6), we find

dPxcy (3277213 63)1/6 P [(1 + q)V/3gn /2 (M| MO)(3n—-1)/6]
dPur  \ GM, (1—¢q) P13 .

(8)

We now adopt # = 0-55 according to the normal mass-radius relation for non-
rotating ZAMS stars. Although an accreting component certainly will not be a
simple ZAMS star, since it will be disturbed by rotational and tidal distortion,
circulation currents, and surface impacts, nevertheless its chemical composition
should remain well mixed and therefore should be changed very little by the final
accretion of some helium-rich material from the core of the other star (Stothers
1972). Although Ry may be abnormally large during the most rapid phase of mass
transfer (Benson 1970), the general form of equation (8) permits the use of other
values of 7, should this seem to be required. Furthermore the strictly rotational
and tidal effects on the radius are expected to be relatively small and can be neg-
lected here. A larger value of 7 would not significantly alter our general conclusions.

Numerically, with P in days, we find

dPxcy (14 ¢)L/3¢0-77 (M1/MO)°'11]
= 069 k [ (1—9) P/ . (9)
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As an example, consider the case of B Lyrae, for which we adopt the parameters
M, =2My, P = 12:9, k = 08, and ¢ = 6 (Wilson 1974). Equation (9) then gives

(dP/dt)NCJ,max = —-0'39(dP/dt)MT. (IO)

This turns out not to be so large as to affect the sign of the period change or even
its magnitude to a large extent. Therefore, for these parameter values, NCJ can
safely be neglected. Nevertheless, note that, for ¢> 1, neglect of NCJ will yield
a mass transfer rate which is a lower limit to the true rate. Equation (9) shows a
very weak dependence on Mj, and the principal dependence is on the mass ratio
Indeed, even with ¢ = 2 (and other parameters above unchanged) we find that
dPxcy/dPyr is only —o0-64, so that the effect of NCJ is essentially negligible,
since it cannot change the order of magnitude of dP/dt. Only when ¢ approaches
unity does the dJ/dt term become dominant, and this is only because the orbital
term vanishes when the masses are equal.

One might also consider tidal transfer of rotational angular momentum back
into the orbit, as Biermann & Hall (1973) and Stothers (1973) have recently done
in somewhat different contexts. Since this effect gives a (dP/dt)rr term (T'T = tidal
transfer) of the same sign (if ¢> 1) as (dP/dt)mt, the absolute value of (dP/dt)rT
would need to be as large as (dP/df)ut in order to introduce as much as a factor of
two error. Therefore this effect probably can also be safely neglected in most cases.
However, we have not attempted to estimate (dJ/dt)Tr, max-

We consider now a second way to specify Ro. Suppose the transferred material
goes into orbit around the secondary star instead of being accreted directly. If so,
the appropriate radius for use in equation (6) is the ring or disk radius at which the
material achieves circular orbit. We then find, substituting for P in equation (6)
by means of Kepler's third law,

dP B (1+q)1/2g1/2
dP};;J = k(2Rz/a)'? [_(7:7)“] (11)

Rs/a cannot be as large as the secondary Roche lobe, because the Keplerian circular
velocity is larger than the binary orbital velocity at that distance from Mz by a
factor of about 2. For simplicity, however, we shall use the Roche lobe radius for
Rs/a and thus find a generous upper limit for dPycy/dPyr. For ¢ = 6 the smallest
equatorial radius (Rg/a) of the secondary lobe is about o-55 (Kopal 1959), and
equation (11) yields dPncy/dPut & —1-0. This corresponds to complete cancella-
tion of normal period changes by the NCJ effect. However, we know from our
(unpublished) orbit integrations and from those of many other authors (e.g.
Kruszewski 1964) that material which falls from the inner Lagrangian point into
the lobe of an accreting star deviates rather little from the line of centres in the
rotating coordinate frame, and will strike the secondary star directly unless the
relative radius of that star is rather small. Thus we can see in this simple way that
the available angular momentum carried by the material is small enough so that
it is our former limit, based on the secondary star radius, and not that based on the
Roche lobe radius, which applies. In fact, this suggests that it should be possible
to set a more restrictive limit on dPxcy/dPut by considering the limited angular
momentum carried by the transferred mass.
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3. ROTATIONAL CHANGES

The foregoing considerations also lead to a limit on the total accreted angular
momentum. Integrating (5) over the entire accretion process from an initial stage ¢
to a final stage f, we find

_ 2k N1/2 [( M_z_’f>(n+3)/2_ ( Mﬂ)(ma)m]

AJ = "3 (2GR,M3) M. 7R . (12)
Stothers & Lucy (1972) showed that in certain massive binary systems with inter-
acting components the accreting star is underluminous with respect to a normal
uniformly rotating ZAMS star. They attributed the underluminosity to high
rotational angular momentum in the core acquired during the mass transfer process.
Since the amount of underluminosity depends theoretically only on the total rota-
tional angular momentum, Jrot, and not on its distribution within the star
(Bodenheimer 1971), it proved possible to determine Jyo; from the observed
underluminosity (Stothers 1973). We can now check these values against the upper

TaBLE 1
¢ Observed’ Jrot and maximum AJ ot for underluminous binary components

M1+ M, Jorb X 10758 Jrot/Jorp Ad ot/ orb

System M) (g cm?s1) (observed) (maximum)
pl Sco 9414 6:2 0°19 067

V Pup 10+18 8:3 025 0-78
SX Aur 6+11 3°4 022 0-82
V356 Sgr 5+12 57 018 0-56

limits given by equation (12). The results are shown in Table I for four systems in
which the ¢ observed ’ Jro averages o-21 times the orbital angular momentum,
Jorb. Since these systems are clearly in the slow phase of mass transfer, we can
adopt #» = o-55 with little uncertainty. We also adopt 2 = 0-8, as before. Equation
(12) then gives

1-775 1-775
Adrot = 3-8 x 1051 [(1%—{) - (]‘]3”) ] gcm?s1, (13)
) o)

Evaluation of (13) for M, ;< My, s, which is an adequate approximation for our
present purpose, gives the last column in Table I, AJrot/Jorp. Clearly the
‘ observed ’ values of Jyot/Jorn fall well below the theoretical limiting values, by
factors of 3 to 4. Nevertheless, not all of the apparent underluminosity need be
due to fast differential rotation if these stars possess an occluding disk, as in B Lyrae
(Wilson 1974).

If these stars did at one time have the theoretical maximum values of Jrot, say
during the rapid phase of mass transfer, plausible reasons might explain why they
do not at present. For example, tides due to the companion will act to retard
rotation and to transfer rotational angular momentum back into the orbit. More
importantly in wider systems where the tides are relatively weak, rotational currents
alone will try to straighten out the angular velocity distribution (Zahn 1973); there-
fore, in time, the envelope will spin faster at the expense of the core (which could
earlier have accumulated and stored a large amount of angular momentum) until
mass and angular momentum are lost at the surface. The primary may then
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appear as an emission-line or shell star. Undoubtedly other mechanisms can
produce such stars, e.g. by the earlier accretion process or by equatorially unstable
rotation in even a single star, and we do not advance our mechanism as the only
possible one for explaining these stars.
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